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ABSTRACT: While string or Yang-Mills theories are based on Lie algebra or two-algebra
structure, recent studies indicate that M-theory may require a one higher, three-algebra
structure. Here we construct a covariant action for a supermembrane in eleven dimensions,
which is invariant under global supersymmetry, local fermionic symmetry and worldvolume
diffeomorphism. Our action is classically on-shell equivalent to the celebrated Bergshoeff-
Sezgin-Townsend action. However, the novelty is that we spell the action genuinely in
terms of Nambu three-brackets: All the derivatives appear through Nambu brackets and
hence it manifests the three-algebra structure. Further the double dimensional reduction
of our action gives straightforwardly to a type IIA string action featuring two-algebra.
Applying the same method, we also construct a covariant action for type IIB superstring,
leading directly to the IKKT matrix model.

KEYWORDS: p-branes, M-Theory, M(atrix) Theories

© SISSA 2009 doi:10.1088,/1126-6708/2009,/04/012


mailto:lkh@phya.yonsei.ac.kr
mailto:park@sogang.ac.kr
http://dx.doi.org/10.1088/1126-6708/2009/04/012

Contents

1 Introduction: two for string and three for M-theory 1
1.1 Filippov n-Lie algebra and its generalization 2
1.2 Reformulation of Nambu-Goto action by Nambu bracket 3

2 Three-algebra based action for supermembrane in eleven dimensions 6
2.1 The action 6
2.2 Symmetries 7

3 Double dimensional reduction to type ITA superstring theory 8

4 Type IIB superstring theory and IKKT matrix model 10

5 Discussion 12

A Useful Fierz identities in eleven dimensions 12

1 Introduction: two for string and three for M-theory

While string and Yang-Mills theories are based on ordinary Lie-algebra or two-algebra
structure, recent advances in M-theory by Bagger, Lambert and Gustavsson (BLG) [1,
2] suggest that the full description of M-theory may require a generalized Lie-algebra
structure: namely three-Lie algebra or shortly three-algebra. In fact, the digits, two and
three, appear to have intriguing associations to string and M-theory respectively: First of
all, two is the dimension of string worldsheet while three is that of membrane worldvolume.
This implies that, after matrix regularization of Poisson bracket structure, IKKT matrix
model [3] is a multiple D-instanton description of type IIB superstring via two-algebra,
while BFSS matrix model [4, 5] is a multiple D0-brane description of eleven-dimensional
supermembrane via two-algebra. In other words, the two worldsheet coordinates of a type
IIB superstring are traded with matrix indices, while the three-dimensional worldvolume
of a supermembrane decomposes into ‘142’, one for the temporal coordinate and two
for the matrix indices. Further, two is the codimension of D-branes in each type IIA,
IIB superstring theory [6], while three is the codimension of M-branes i.e. M2 and M5.
Consequently, through two-algebra interaction as known as Myers effect [7], multiple Dp-
branes may condense or be polarized into D(p + 2)-brane. Similarly, through three-algebra
interaction, BLG model equipped with an infinite dimensional gauge group corresponds
to a description of the condensation of multiple M2-branes into a single M5-brane [8-20].
Namely, the polarizations of D-branes and M2-branes require two-algebra and three-algebra
respectively.



e 2 for string:
String worldsheet dimension = IKKT type IIB matrix model
2-algebra structure =  Matrix string / Yang-Mills
Codimension of D-branes =  Myers effect: polarization
of Dp into D(p + 2)

e 3 for M-theory:

Membrane worldvolume dimension BFSS M-theory matrix model
BLG model
Condensation of M2s

into M5 in BLG model

3-algebra structure
Codimension of M2 and M5

(R

All the above associations of 2 and 3 to string and M-theory may be naturally understood
by a reformulation of the Nambu-Goto action for a p-brane. Prior to the explanation, we
first review Filippov n-Lie algebra and discuss its generalization which is necessary for us
later.

1.1 Filippov n-Lie algebra and its generalization
Filippov introduced n-Lie algebra [21] which is a natural generalization of a Lie algebra,
defined by n-bracket satisfying the totally anti-symmetric property:

[Xla"' )Xl'a"' 7Xj?”' aXn] = _[Xla"' ,Xj?'” aXia"' ,Xn]’ (11)

and the Leibniz rule:

n

[Xla"' 7Xn—17[Y17"' 7Yn]] - Z [Yh'” 7[X17”' 7Xn—17YA]7”' 7Yn] . (12)

J=1

The n-Lie algebra can be equipped with an invariant inner product, satisfying the sym-
metric property,
(X,Y)=(Y, X), (1.3)

as well as the invariance under the n-bracket transformation,
<[X15 U ,anla Y]a Z> + <Yy [Xla U aanh Z]> =0. (14)

When n = 2 the definition reduces to the usual Lie algebra and the inner product can be
given by ‘Trace’.
Explicitly we may introduce a basis of the n-Lie algebra, T%, a = 1,2,--- and write

[T, 792, ... T%) = faezan, b (1.5)

From (1.1) the structure constant f@192""% is totally anti-symmetric for the upper indices,

and the Leibniz rule implies

n
fa1a2~~~ancfb1b2--'bnan _ Z fGIGQ"'anlbjdfbl"'bj—ldbj+1"'bnc. (1.6)
j=1



Further the invariant inner product defines a metric (T, T?) which, along with its inverse,
can raise or lower the index a. It is worth while to note that in the above expressions
all the quantities are assumed to be bosonic. When fermionic variables are present, there
must appear extra minus sign if the fermionic quantities are permuted odd times.

One may easily realize the n-Lie algebra in terms of Nambu n-bracket defined over

functional space on an n-dimensional manifold [22]:

1
(X1, Xo, -+ X = {X1, Xo, -, Xpjap = TEMQ O, X101, X0 -+ 01, X
g (1.7)
(X,Y) — /d"y VG XY .

In order to ensure the partial integration, either the manifold must be compact or all
the functions must vanish on the boundaries of the non-compact manifold. Note that G
corresponds to the determinant of the metric of the manifold, and can be chosen arbitrarily
since the properties (1.1), (1.2), (1.4) hold irrespective of the presence of the local factor.
In this functional realization of the n-Lie algebra, the invariant inner product generalizes:

(X,Y,-,2) — /d"y\/EXY---Z, (1.8)

such that it satisfies, as a generalization of (1.4),

m
Z <YiaY2,"' aYk:—la[Xla"' ,anlayk:]?Yk‘-i-l,'” Ym> =0. (19)
k=1

Note that throughout the paper we denote the defining equality by :=’ and the on-shell
equality as well as gauge fixings by ‘=’. For further works on three-algebra see e.g. [23-26].
1.2 Reformulation of Nambu-Goto action by Nambu bracket

With an embedding of (p + 1)-dimensional worldvolume coordinates into D-dimensional
target spacetime,
X() g — XM (1.10)

where m = 0,1,--- ,p and M = 0,1,--- , D — 1, the Nambu-Goto action for a p-brane
reads [27]

Let us decompose, formally, the p-brane worldvolume coordinates into two parts:

{&m} ={o" ¢}, (1.12)

where 4 =0,1,--- ,d—1 andi=1,--- ,cf such that p+1 = d+d. The decomposition
is a priori arbitrary for any non-negative integers d, d. One natural application of the
splitting will be the case where p-brane is extended over two topologically different spaces,



e.g. compact and non-compact spaces. With the decomposition above, a square root free
reformulation of the Nambu-Goto action was achieved in [13]:

S = /dda Tr<ML> ,

Tr := /ddg, (1.13)

L = "D, XMD, Xy
1 .
_4—dA'wd71{XM1 9 XM27 ) XMd}N.B{XMl ) XMQ’ ) XMd*}N.B + (d - 1)UJ ) (114)
where the action contains three kinds of auxiliary fields: scalar w, d-dimensional metric
h,, and a gauge connection A;j which defines the ‘covariant derivative’:

D, XM =9, XM — Ao, xM. (1.15)
The Nambu d-bracket (1.7) is defined here, simply without a local factor, by!
", Yz, .- ,ch}N.B = e“iQ”'idﬁilYﬁing . -%Y&. (1.16)

Integrating out all the auxiliary fields, using their on-shell values, the action reduces to the
Nambu-Goto action, Sy.. = Sx.¢., and hence the classical equivalence. The novelty of the
above reformulation was the appearance of the gauge interaction and the Nambu bracket
squared potential. The latter basically stems from an identity rewriting the determinant
as the Nambu bracket squared:

1 )
det(0; XM, X)) = E{XMl,XM% o, XMy o { X0, Xty X, bue (1.17)

A physical picture behind the reformulation is to describe a single brane as a con-
densation of multiple lower-dimensional branes, i.e. a p-brane by (d — 1)-branes: IKKT
matrix model [3] is a multiple D-instanton description of type IIB superstring, while BFSS
matrix model [4] is a multiple DO-brane description of supermembrane (see also [28]) .
Obviously, the choice of d=0and d = p + 1 corresponds to the well-known “Polyakov”
action which was actually first conceived by Brink, Di Vecchia, Howe, Tucker [29, 30]. On
the other hand, with a gauge fixing for w to be constant, the other extreme choice of d = 0,
d= p + 1 leads to the Schild action [31]. Furthermore, the association of the digits, 2 and
3 to string and M-theory become manifest within the reformulation: For example, the
fact that the codimension of D-branes is 2 suggests to choose d= 2, which leads to the
two-algebra as in Yang-Mills. Likely the choice of p = 5, d = 3, d=3 suggests that the
Bagger-Lambert-Gustavsson model with an infinite dimensional gauge group describes a
M>5-brane as a condensation of multiple M2-branes.

The reformulation of the Nambu-Goto action (1.14) is purely bosonic. In order to
establish a firm connection to string/M-theory one needs to supersymmetrize them. The
requirement of supersymmetry may give rise to a constraint on the a priori arbitrary
decomposition, p+ 1 =d + d.

! As usual, €1%27" is the totally anti-symmetric d-dimensional tensor of the normalization €% = 1.



Our main interest is to supersymmetrize the action (1.14). For d = 1 case, supersym-
metric actions are ready to be read-off from an earlier work by Bergshoeff, Sezgin, Tanii and
Townsend [37]. In its appendix the authors listed light-cone gauge fixed supersymmetric
actions for various p-branes in diverse spacetime dimensions. Utilizing the identity (1.17),
in terms of Nambu p-bracket, their light-cone gauge fixed supersymmetric p-brane actions
can be reexpressed in a compact form:

1 1 1.
Lio = 5(DtXf)2 — 2—p'{X11,X12, D G S iU

1 -
+72(p — 1)!\11111112---1;771{)([17... X1, 1, VUne - (1.18)

As usual, the Fierz identity required for the supersymmetry invariance, restricts the possible
values of p and the spacetime dimension D (as for I =1,2,--- , D — 2):

p=1: D=3,4,6,10

p=2: D=45"711

p=3: D=6,8 (1.19)
p=4: D=9

p=5: D=10.

In the present paper, we consider an alternative choice of d = 0. In particular, we
focus on a supermembrane propagating in eleven-dimensional flat spacetime. As we take
the choice of d = 3, the bosonic action is of Schild type and it will contain manifestly
Nambu three-brackets.

The organization of the rest of the paper is as follows. In section 2 we present our
main result: We construct a 3-algebra based action for a supermembrane in eleven di-
mensions. The action is invariant under global supersymmetry, local kappa-symmetry and
worldvolume diffeomorphism. In section 3 we perform a double dimensional reduction and
obtain a covariant, two-algebra based action for a type IIA superstring in ten dimensions.
In a similar fashion, in section 4 we construct a covariant, two-algebra based action for
a type IIB superstring. Section 5 contains our discussion and the appendix carries some
useful identities.

Note added: while this work was being finished, two related papers, [35] and [36], ap-
peared on arXiv. The former discusses a bosonic three-algebra squared action and the latter
presents a supersymmetric version of it with the spacetime dimension four and the signa-
ture 2 4+ 2. On the other hand, our action is for the supermembrane in eleven-dimensional

Minkowskian spacetime.



2 Three-algebra based action for supermembrane in eleven dimensions

2.1 The action

We propose the following action for the three-algebra description of a supermembrane in

eleven dimensions:

1 1
L, = Ew—1<HM,HN,r[P><1IM,HN,HP> — 3¢
1 .- 1- _
Loy = —iie”kHI’MN(?ZH <H§M XN — gerMaje erNak9> , (2.2)

which contains eleven-dimensional target spacetime coordinates X, a Majorana spinor 6
and a scalar density field w. The former two are dynamical while the last one is auxiliary.
With the supersymmetry invariant pull-back:

oM .= o, xM —igTM ;0 (2.3)

we set
(rt, oM, ") = SRy (2.4)

which has the following expansion in terms of the Nambu-bracket (1.16),2

@ M Ny = {x XM XN = 3ierE XM XN gy 4 36{T e, XM erVI L0
—i0a050,{(TLG) (TM)? (TN s . (2.5)

Similarly, the Wess-Zumino part of the action can be also reexpressed in terms of the
Nambu-bracket:

1~ 1- - o
ﬁwz - _Z§9PMN{XM7 XNa Q}NAB + 56049,6’{(PMN0) ) (FM9)67 XN}NAB (2-6)
1. _ _
—i=0a050-{(Carn6)”, (TM)P (TNO) Iy - (2.7)
Thus, all the derivatives appear only through Nambu three-brackets.

Let us now introduce a shorthand notation for the induced metric:
gij = HiuHMj y (28)

and denote its determinant by g := det(g;;) as usual.
All the equations of motion are then summarized by:

w—y=g=0, (2.9)
GITIMT (1 - T)9;0 = 0, (2.10)
0; (V=gg"TI}") — ie 0,07 y ;011 = 0. (2.11)

2Note that the bracket [L, M, N] denotes the anti-symmetrization of the three indices with an overall

factor 1

5, t.e of ‘strength one’.



From an identity analogue to (1.17):
1
6<HM,HN,HP>(HM,HN,HP> = det (IIMTL;1) (2.12)

integrating out the auxiliary scalar assuming the on-shell value w = /—g, our proposed
action (2.1) reduces to the well-known supersymmetric Nambu-Goto action for M2-brane
by Bergshoeff, Sezgin and Townsend [32, 33]:

1 ... _ 1_ _
Sniz = / d’¢ [— \/— det (TIMI1;p7) — iie”kHI‘MN(?iH (Hy XN — gerMaje erNa,ﬂ) ] :

(2.13)
2.2 Symmetries
The action (2.1) is invariant under the following transformations.
o Target-spacetime supersymmetry:
0.0 = ¢, 0. XM = —igTM¢ dow =0, (2.14)

which leaves HZM and L, invariant, while transforms Ly, to a total derivative:
8-Lowz = 0i(En') (2.15)
where ¢ is a constant supersymmetry parameter and
0= —i%eijk{ Tarn0 ;XM 0, XN — i (Tayn0;0 0T 0,0 — TM 9,0 0T 59,0 ) XV

1 ] ] i
— < (Can0 00 9,0 + TV 9001 0;6) TV 9,0 (2.16)

o Local 32-component fermionic symmetry:

3¢t = [1+ (w/vV=9)T] ¢, (2.17)
o XM = igrMse0, (2.18)
5<w = 4iwg_1ijﬂf\/[8j§FMC, (2.19)

where ( is an arbitrary local 32-component spinorial parameter and I is as in [32, 33]:

I:= art, M vy (2.20)

1
——I'LunN
6v—g
satisfying
?=1. (2.21)

Under the transformation above (2.19), the Lagrangian transforms to a
total derivative:

O¢ (Lo + Lwz) = 0; (V16c0) (2.22)



) 1 .. _
Y= _56”’“ i0; XM 0 XN OT pr v (2.23)
_ _ _ _ 1-_
+ (00M9;0 0T py v + OT v 0;0 6T ) <6kXN - i§9FN6k9> ] .

In particular, taking the choice ¢ = (1 +w/\/—g) (1 + Tk leads to a symmetry:

5.0 = (1+ D)k, (2.24)
6 XM = iorMs,0, (2.25)
S = 4i—Y "9 =HITIN 90T 6,6 (2.26)

w—i—\/_

where k is an arbitrary local fermionic parameter so that the transformations of
and XM coincide with the kappa-symmetry in [32, 33].

On the other hand, an alternative, in fact complimentary, choice (¢ = (1 +
w/\/—g) ' [1 — (w/\/—g)T']K" leads to a symmetry:

50 = (1 —w/v/—g)K, (2.27)

S XM = i0TM5,.0, (2.28)

Sprw = 4i V=g g YITIN 9,00 N[1 — (w/V/=g)T |K. (2.29)

w—i-\/_

On-shell (2.11), these transformations are trivial and hence cannot be used to reduce
the fermionic physical degrees further after a x-gauge fixing. More discussion on
trivial symmetry transformations we refer e.g. [38]. Combining (2.26) and (2.29) gives
back the generic transformation (2.19), and hence the former two are complimentary
to each other.

o Worldvolume diffeomorphism:
S, XM = ig; XM 5,0 = v°0,0 , Spw = O;(wo') , (2.30)

where v? = §¢% is an arbitrary local bosonic parameter, and the Lagrangian transforms
to a total derivative as

3 Double dimensional reduction to type IIA superstring theory

Double dimensional reduction [34] of our supermembrane action (2.1), putting 2 = X0,
I .= 110 straightforwardly leads to the following reformulation of the type ITA super-
string action by Green and Schwarz [39, 40]:3

SIIA = /d2£(ﬁw + ‘CWZ) ) (3-1)

3For the dimensional reduction of BLG model see e.g. [41, 42].



where with¢=1,2, M =0,1,---,9,

Lo, = iwﬂ(HM,annM,nm _ %w, (3.2)
Ly = i€ 0;XM0T yr(11)0;0 — %éjérM(u)aie orMo,0 (3.3)

and
M = 9, xM — o190 (MM, 1Y) o= eIy . (3.4)

Note that 6 is a ten-dimensional Majorana spinor which can decompose into a chiral and
an anti-chiral Majorana spinor, and hence type IIA Majorana-Weyl spinors of opposite
chiralities.

In terms of Nambu 2-bracket or Poisson bracket, we can write

MM Ny = (XM XN}, — 2i0{X™M TNV, o+ 0,05{(T ™M), (TN6) Y, (3.5)
- 1, o
Loz = B{XM Tarnfhen + 50005{(Caran)”, (0V6) ) (36)

Thus, all the derivatives appear only through Poisson brackets.

Integrating out the auxiliary scalar field w, our action (3.1) reduces to the Green-
Schwarz action for type ITA superstring [39, 40].

The action (3.1) is invariant under the following transformations.

o Target-spacetime supersymmetry:
5.0 = ¢, 5 XM = —ifTM¢ | Sew =0, (3.7)
which leaves L, invariant and transforms Ly to a total derivative:
0Lz = 0i(Enfya) (3.8)

where € is a constant supersymmetry parameter and

. » , 1 _ 1 _
nIZIA = EU — ZFM(ll)H 8]XM — EFM(ll)H HFMOJH — EFMH HFM(ll)ajﬁ . (39)

e Local 32-component fermionic symmetry:

6c0 = [1+ (w/v=g)TT]C, (3.10)
o XM =TV 500, (3.11)
(5((4) = 4z'wg_1inZM@j9PMC, (3.12)

where ¢ is an arbitrary 32-component local fermionic parameter and

- 1 N
.= ﬁ EUHi H] FMN, (313)
satisfying T2 = 1. Under the transformation (3.12) the Lagrangian transforms to a
total derivative:



where
P, =€ <—i(9jXM«9FM(11) - %érM(u)aje oM — %érMaj erM(n)> . (3.15)
As in the case of the three-algebra based supermembrane action (2.26), (2.29), the
local fermionic symmetry consists of k-symmetry and trivial transformation.
o Worldvolume diffeomorphism:
S, XM = yig; XM 8,0 = v°0,;0 , Spw = O;(wr?). (3.16)

The Lagrangian transforms to a total derivative as (2.31).

4 Type IIB superstring theory and IKKT matrix model

In a similar fashion to our type IIA superstring action (3.1), the Schild version of type IIB
superstring action assumes the form:

Sup = /d2§(£w + Lwz), (4.1)
where
L 1 oM N 1
Ew = Zw <H ,H ><HM,HN>—§(U,
Lyz = —i€10; XM (0'T2,0,0* — 6°T2,0;0%) + €90'TM 9,6 0°T ;0,6 (4.2)

= 0 TA{ XM, 0 ) + 02T a { XM 0% e 5 — OLG2{(T 0161, (DM 6%)P}p .
With a pair of Majorana-Weyl spinors of a same chirality,
rgl = g1 g2 — g2 (4.3)
the supersymmetry invariant pull-back is given by
Y = o, xM — 4 (0'TM9,0" + 0°TM09,0) . (4.4)
Our type IIB superstring action (4.1) is invariant under the following transformations.

o Target-spacetime supersymmetry:

50" =€t 5.0% = €2, 8. XM = —iplT Ml — 92T M2 dew =0,
(4.5)
which leaves £, invariant and transforms Ly, to a total derivative:
0-Lwz = 0i(E'mify + ) | (4.6)
where 61, €2 are constant supersymmetry parameters and
. g 1 _
ni = € (ianMrMel + ngelelrMajm) , (4.7)
_ g 1 _
nh = —e¥ <¢anMrM92 + 3010 921“Maj92> : (4.8)

,10,



e Local 32-component fermionic symmetry:

w  ~
50" = (1 + =T )¢, (4.9)
=)
w  ~
5:0% = (1 - ——T)¢%, (4.10)
)
S XM =0T M0 +i6*TM 507 (4.11)
Sew = 4iwg "IN (0,0' T n ¢! + 0,0°T N (), (4.12)

where ( is an arbitrary local fermionic parameter. The Lagrangian transforms to a
total derivative,

8¢ (Lo + Lwz) = 0 (Urin0c0' + 97u6:6%) (4.13)
where
b 1= €7 (40 Ty — 07T 9,602 0'Ty ) (4.14)

The local fermionic symmetry above consists of k-symmetry and trivial transforma-
tion, as in the supermembrane and type IIA superstring cases.

o Worldvolume diffeomorphism:

S, XM = yig; XM 5,0 = 00,01, 5,0% = v'0,;6%, Spw = O;(wo') ,
(4.16)
where v' = ¢! is an arbitrary local bosonic parameter. The Lagrangian transforms
to a total derivative as (2.31).

Now, replacing 62 by i6? through an analytic continuation [3], fixing the gauge 6! = §*
through the local fermionic symmetry and w = 1 through the diffeomorphism, the action
reduces to the form:

1 _
Sip = / ¢ {XM, XV e o {Xar, Xnbo — 20 Ta {X M, 0% (4.17)

which straightforwardly leads, after a matrix regularization of the Poisson bracket, to
the type IIB IKKT matrix model [3]. Thus, our two-algebra based covariant type IIB
superstring action (4.1) presents a direct derivation of the IKKT matrix model starting
from the covariant superstring action (4.1).4

“Note that in the original derivation of the type IIB matrix model [3], the auxiliary scalar field vanished
away during the matrix regularization as it is absorbed into either the trace or the matrix commutator,
while in our scheme it is gauge fixed to be a constant.

— 11 —



5 Discussion

In summary, we have constructed covariant actions for type IIA, type IIB superstrings
in ten dimensions, and supermembrane in eleven dimensions, which are invariant under
global supersymmetry, local fermionic symmetry and worldvolume diffeomorphism. All the
derivatives therein appear through Nambu brackets such that the two-algebra structure of
superstring theory and the three-algebra structure of M-theory become manifest. Nambu
two and three brackets naturally arise since the dimensions of the string worldsheet and
the membrane worldvolume are two and three respectively. One advantage to employ the
Nambu brackets is the simplicity of the double dimensional reduction: The three-bracket
clearly reduces to the two-bracket.

Since our resulting actions (2.1), (3.1), (4.1) contain higher than second order terms, the
generalization of the inner product of Filippov n-Lie algebra as in (1.8), (1.9) is necessary.
Like the type IIB case, suitable gauge fixing to simplify the actions for supermembrane
and type ITA superstring is desired.

The BFSS matrix model [4, 5] is a light-cone gauge fixed action for supermembrane such
that it describes only the sector of classically fixed light-cone momentum. Our covariant
supermembrane action (2.1) is classically equivalent to the BFSS matrix model. However,
the quantum equivalence is to be investigated in future work.
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A Useful Fierz identities in eleven dimensions

In Minkowskian eleven dimensions, with an anti-symmetric charge conjugation matrix C,
the gamma matrices satisfy

(CPMlMg---Mn)T _ (_1)1+%n(n+1)CI\M1M2mMn ’ (A1)

and a Fierz identity:

(CT™) (0g(CT aN)45) = 0. (A.2)

- 12 —



Thanks to this Fierz identity, various identities follow which are crucial for the supersym-
metry and the local fermionic symmetry of the action (2.1):

¥ (2T 0 00; BT 040 — 20T ;0 00T e
+O0T 1N OO TN — 2T 000 T M 010 ) = 0,
(T an 0,0 0,0 040 + HIT \n D0 TV 040 ) = 0,
(S0 010 T ;0 + 0T a1 0,0 0,07 ) T 0,0
= 040, { (T anB ATV 056 + T 036 0) T 040 ) (A.3)
Other useful identities include

. 1., 5 i
(M)l () = 3¢ 19000 + m(FLMNC N LN C)ys (A.4)
3

3l (LEMNPC (T L pC)as
5 3 )
(PN N, = DMy (MO (OT )
1 —
+m(rL1L2L3L4C 1)045(CFML1L2L3L4)V ,
and 1
\/—_ggflijl'[;wPMP = \/__ggflinyITM — §6iijJLH£4TLM. 45)
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